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SUMMARY

The paper deals with three wide classes of optimality criteria of experimental designs:
Universal Optimality, involving the classical definition of convexity of a function, Ge-
neral Optimality, involving a combination of differentiable functions and B-Universal
Optimality, where the Schur convexity is used. Two theorems on relationships be-
tween pairs of these classes are proved and some corollaries drawn. The applicability
of the considered criteria to designs under fixed and also mixed linear models makes
the results general.
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1. Introduction and preliminaries

Let D be a class of experimental designs under a linear model
{y, X", V(a)}, )

where y is an n-dimensional observable random vector with an expected value E (y) =
XTr and a dispersion matrix Cov(y) = V(o) = Y7, V02, which depends on
an unknown vector o = (0%, ey 02,)T of variance components; V; are nonnegative
definite known matrices, 7 denotes a v-dimensional vector of fixed parameters, and
X is a known design matrix for the parameters .

Most of optimality criteria used in the literature are functionals of information
matrices. We define an information matrix, say Ag, for the parameters 67 = (+T,a7),
of a design d € D under the model (1) as a dispersion matrix of a random vector of

derivatives of a likelihood function of y with respect to the parameters 87 = (+7, o7

?
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that is,
Ay =Cov <—6—£((3yg—’6—)—) .

Assuming an n-dimensional normal distribution of the vector y we have (cf. Searle,
1970; Hocking, 1985)

M O
r=lot ol )
where M = XTV~1X is an information matrix for the fixed parameters T and =
{Itr(V-IV, V™ 1VJ)} m is an information matrix for the variance components

o. Let us note that both M and €2 depend on the dispersion matrix of the model,
i.e., on the unknown variance components. This makes searching for optimum designs
much more difficult than in the case of fixed models, where V = ¢2I, with ¢? being
a positive scalar and I — the identity matrix. For fixed models we have

1
—XTX 0
Aa=| 7 5 n
3(02)?

and the matrix X7 X is usually considered as the information matrix. The matrix
(2) plays an essential role in the optimality theory as it has an important statistical
interpretation, namely, its inverse is an asymptotic covariance matrix of the maximum
likelihood (ML) estimator of the parameters:

M 0 r, )

Cov(0) — [ 0 0
where (5) denotes the ML estimator of the vector 6. In the fixed model we are
interested in Cov(#) = M~1. These facts give rise to many definitions of optimality
criteria, which are functionals of information matrices. The asymptotic property (3)
of the inverse of the information matrix in the case of mixed models makes the criteria
useful for finding optimum designs for estimation of fixed parameters in such models,
too. However, in the mixed models there arise the problem of the dependence of the
information matrix on the unknown variance components. Optimality criteria for the
whole set of parameters 87 = (7, 07T) should be defined separately, for example as
a combination of some functionals of the information matrix M for fixed parameters
and the information matrix € for variance components (Giovagnoli and Sebastiani,
1989; Bogacka, 1995).

Throughout the paper we consider the optimality criteria for fixed parameters
and the results are general, i.e., they do not depend on the type of the model of
observations, and the results may be applied to fixed or mixed linear models (Bogacka
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and Mejza, 1996).

2. Definitions of optimality

First we introduce some notation. Let 9M(d) = {My : d € D} denote a set of
information matrices for fixed parameters of designs d € D, let 91 = {M > 0}
be a set of nonnegative or positive definite (v x v)-dimensional matrices of rank s,
whose eigenvalues are not greater than the largest eigenvalue of any My € 9i(d).
Furthermore, let A(M) = (A1 (M), ..., As(M))T denote a vector of positive eigenvalues
of a matrix M and A(90) = {A(M) : M € 91} denote a set of vectors of eigenvalues
of matrices M € 9.

Civen a function ® : 9 — R, we say that a design d* € D is ®-optimum in the
class D if its information matrix My~ fulfills

¢(M,.) <®M,) forallde D.

Bondar (1983), Kiefer (1975), Cheng (1978) and Shah and Sinha (1989) considered
some general definitions referring to very wide sets of optimality criteria. In all of these
definitions the functionals have to fulfill some conditions, usually dealing with a kind
of convexity (or concavity), invariance of the functional with respect to permutations
of rows or/and columns of the information matrix, a kind of monotonicity and other
conditions. The differences among the definitions come from the different ways of
defining some of these conditions, mainly convexity. Now, let us recall the first three
of these definitions.

DEFINITION 1. (Kiefer, 1975) A design d* € D is universally optimal in the class D
if its information matrix Mg~ minimises every ® : 9 — R, satisfying the following
conditions:
a) ®(M) =®(PTMP), where P is any (v x v)-dimensional permutation matrix,
b) @ is a convex function, i.e., ®(aM; + (1 — a)M3) < a®(M;) + (1 — a)®(M,),
c¢) ®(bM) is nonincreasing in a scalar b > 0.

We denote the functionals defined on A(9) by lower case letter ¢. A useful family
of optimality criteria fulfilling the conditions of Definition 1, defined on eigenvalues
of information matrices, is

& 1/p
p(A(M) = E ZA;F(M)} ., pe(0,00).
=1

For p=1, p — 0 and p — oo we have three functions equivalent to the known A, D
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and E optimality criteria, respectively:

PAMD) = = 3707 (M),
=1

lim o, (A(M)) = [ A7 (M),
=1

p—0

lim ¢, (A(M)) = max A" (M).

p—0 7

Kiefer (1975) also took into account a functional p(A(M)), which is a combination of

convex real functions. However, it was Cheng, who presented and considered formal
definition of the so called general optimality.

DEFINITION 2. (Cheng, 1978) A design d* € D is generally optimal in the class D if
its information matrix Mg- minimises every ¢ : A(M) — R, of the form

pr(AM)) = Zf(&(M)),

where the function f: [0,20] = Ry, zg = maxgy gy trM, satisfies the following condi-
tions:

1) f is continuously differentiable on (0, =),

2) first, second and third derivatives of f satisfy the following conditions on
(072;0) . f/ <0, f// >0, f/// <0,

3) f(0) =lim, o, f(a) = oo.

The function f is strictly decreasing and strictly convex (f' < 0, f” > 0) and its
first derivative f’ is strictly increasing and strictly concave (f” > 0, f < 0). The
third condition ensures that the designs for which the matrices My have eigenvalues
near zero can not be optimal. The class of functions defined by Cheng also includes
A and D optimality criteria. Namely, taking

fi(z) =27t and  fa(z) = —logz

we obtain
1 S _ S B
e AM) = =3 AT M) and g, (A(M)) = log [T A (M).
=1 =1
Bondar (1983) considered another class of optimality criteria. He called the
designs fulfilling conditions of his definition universally optimal designs. However, the
conditions are not equivalent to the Kiefer’s ones. So, we propose to term such designs
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B-universally optimal (BU-optimal for short). Bondar’s definition may equivalently
be written as:

DEFINITION 3. A design d* € D is BU-optimal in the class D if its information
matrix Mg- minimises every ® : 91 — R satisfying the following conditions:

a’) (M) =p(A(M)), i.e., ®(M) is a function of eigenvalues of information ma-
trices,

) p(A(M)) is a Schur-convex function on a set A(M), i.e., A(M,) < A(M,) =
©(A(M,)) <p(A(M,)), where the symbol ” < ” denotes majorization of A(M,) by
A(M,) (cf. Marshall and Olkin, 1989, chapter 1),

) AaMy) 2 Ag(My)Vi = o(A(M,)) < p(A(M,)), where AmpM) > . >
As)(M). ‘

Having three so wide definitions of optimality one can ask which of them should
be preferably used. One of the ways to find an answer is to consider relationships
between these definitions.

3. Results

3.1. Classes of optimality criteria

Comparison of the three definitions given in Section 2 is very difficult if there is no
common space on which the functions @ are defined. We restrict further consideration
to functions defined on the set of vectors of positive eigenvalues of matrices M, i.e.,
®(M) =p(A(M)). Furthermore, let F, Fo and Fp stand for the following classes of
optimality criteria:

I

Fy {p(A(M)) satisfying (a), (b), (c) of Def.1.},

Fo = {p(A(M)) :Zf()\i(l\/[)), [ satisfying (1), (2), (3) of Def.2.}

Fg = {p(A(M)) satisfying (2’), (b’), (¢) of Def.3.}.

3.2. Relationships between the classes of optimality criteria

We have the following theorem:

THEOREM 1. If a function ¢ : A(9) — R, belongs to the class Fg then the function
also belongs to the class Fg, i.e.,

Fe C F3.

Proof. Let a function @(A(M)) =3""_, f(A:(M)) € Fg. The form of this function
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ensures that the condition (a’) of the Definition 3 is fulfilled.
By the condition (2) of Definition 2 we have

Ap(M) 2 . 2 A (M) = f'(A\y(M)) = .. = /(A (M),
where f'(A\;(M)), i = 1,..., s, is the partial derivative of the functional ¢ with respect
to /\[i](M):

o) - 20

Hence, by the Theorem A3, p.56 in Marshall and Olkin (1989), the function ¢ is
Schur-convex on '
ApOR) = {AM) Ag(M) = ... > Mg (M)}

and also on (), NA(9M). Hence, by symmetry of A(9) and ¢ and by the Remark
on p.54 in Marshall and Olkin (1989), ¢ is Schur-convex on A(9), which means that
it satisfies the condition (b’) of Definition 3.

Furthermore, f is a nonincreasing function, i.e.,

Ap(My) 2 X (My) = f(Ag(My)) < f(A(My)),
and ¢ satisfies the condition (c’) of the Definition 3.
So, the function ¢ € F¢ satisfies all conditions from the set Fp. O
Another inclusion is shown in Theorem 2.
THEOREM 2. If a function @ : A(901) — Ry belongs to the class Fc then the function

also belongs to the class Fi, i.e.,

Fo C Fxk.

Proof. Let a function ¢ € Fg. By the condition (2) of Definition 2 the function ¢ is
convex and decreasing in a scalar b > 0. Furthermore, the form

e(AM)) = F(x(M))
i=1

ensures that this function fulfills the Kiefer’s condition (a) of permutation invariance.
So, the function ¢ € F¢ satisfies all conditions from the set Fx. O

There is no such relation between the classes Fx and Fp. If the function
O(M) =p(A(M)) is convex then p(A(M)) is a convex and Schur-convex function.
So, we have

{e(AM) : (a), (<)} C F.
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However, condition (c’) is stronger than (c), i.e., (c) does not imply (c’).
From the above results follow the corollaries:

COROLLARY 1. A wuniversally optimal design is also generally optimal, ¢,-optimal
and A-, D- and E-optimal design.

COROLLARY 2. A BU-optimal design is also generally optimal and A-, D-optimal
design.

4. Discussion

The relationships between classes of optimality criteria were considered also by Shah
and Sinha (1989). They defined the so called Extended Universal Optimality, where
somewhat different conditions, particularly suitable in the case of a fixed linear model,
are imposed on the optimality functional (Chapter 1, p.7). A special kind of convexity,
called ’weak convexity’, is considered by them. The authors show inclusions of four
sets of functionals (Chapter 1, p.6), however the sets are different than Fg, Fp, Fk
considered here.

The criteria examined here are general and may be applied in the fixed or mixed
linear model situations. But not all optimality criteria, introduced in fixed linear
model case, can be directly adopted to the mixed linear model case. There are some
problems, especially in mixed linear model case when dispersion structure of the model
follows from a randomization model. The reader is referred to paper by Bogacka and
Mejza (1996).

The paper by Bogacka and Mejza (1994) considers the experiment carried out in
a block design under the mixed linear model. In particular, it presents the conditions
for a generally balanced block design to be optimal with respect to the optimality
criteria discussed here. In the characterisations of the optimal classes of block designs
relationships between criteria considered here were used.
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Relacje pomiedzy pewnymi kryteriami optymalnoSci
STRESZCZENIE

Praca przedstawia relacje pomiedzy trzema kryteriami optymalnosci ukladéw do-
Swiadczalnych: Kiefera, Bondara i Chenga. Wykazano ze kryterium Chenga zawiera
si¢ w kryterium Bondara oraz ze kryterium Chenga zawiera si¢ w kryterium Kiefera.
Niestety, nie udalo sie znales¢ relacji pomiedzy kryteriami Kiefera i Bondara. Przedy-
skutowano mozliwoé¢ stosowania powyzszych kryteriéw dla dowiadczen, w ktérych
obserwacje opisywane sg modelem liniowym stalym lub mieszanym.

SLOWA KLUCZOWE: kryteria optymalnoéci, macierz informacji, uktady doéwiadczalne.



